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Abstract
In this work, recent theoretical investigations by the authors in the area of oxide multilayers are
briefly reviewed. The calculations were carried out using model Hamiltonians and a variety of
non-perturbative techniques. Moreover, new results are also included here. They correspond to
the generation of a metallic state by mixing insulators in a multilayer geometry, using the
Hubbard and double-exchange models. For the latter, the resulting metallic state is also
ferromagnetic. This illustrates how electron or hole doping via transfer of charge in multilayers
can lead to the study of phase diagrams of transition metal oxides in the clean limit. Currently,
these phase diagrams are much affected by the disordering standard chemical doping procedure,
which introduces quenched disorder in the material.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of heterostructures involving strongly correlated
materials have attracted considerable attention recently [1].
One of the main subjects of interest is the possibility of
stabilizing new phases at the interface between two transition
metal oxides. In general, these two materials will have different
work functions creating a situation of non-equilibrium. The
electronic system reacts to the mismatch of the work functions
by generating an inhomogeneous charge distribution at the
interface resulting in some electronic charge being transferred
between the two materials. The electrostatic potential created
by the inhomogeneous charge distribution compensates the
difference in the work functions.

In principle, this physics appears to be quite similar to
that found in interfaces of semiconductors. However, strongly
correlated materials have complex phase diagrams with very
different competing phases as the electronic charge density,
pressure, temperature, and external fields are varied [2].
From this perspective, interfaces of oxides have considerable
potential to create novel physics.

The goals of this paper are the following: (1) first, we
will briefly review previous theoretical work by the authors
in the area of modeling and computer simulations, addressing

the effect of the charge transfer in several on these oxide
heterostructures. In particular, we will focus on the possibility
of electronic doping in these heterostructures, namely reaching
electronic densities intermediate between those of insulators,
in a region of the material which is chemically homogeneous.
Electronic doping, as opposed to chemical doping, does
not induce structural or Coulombic defects in the material.
Thus, effects of quenched disorder can be studied, raising
the possibility of reaching higher critical temperatures in
heterostructures than in chemically doped bulk materials. (2)
The second goal of this paper is to present new results related
with the mixture (in multilayer geometries) of insulating
antiferromagnets. It is observed that this mixture can lead
to a metal with very different magnetic properties than the
constituents. A simple model and calculation illustrates the
physics that induces this interesting behavior.

The outline of this paper is the following. In sections 2
and 3, we briefly review the charge transfer at interfaces of
Ti oxides and Cu/Mn oxides. In section 4, new results are
presented. Here, we study the charge transfer that takes
place in a heterostructure formed by alternating layers of
two insulators described by the Hubbard and double-exchange
(DE) models. We analyze the case when the layers are thin
enough to allow the charge to be transferred all throughout the
heterostructure, leading to a metallic state.
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Note that the brief nature of this manuscript does not allow
us to fully review the rapidly growing field of oxide interfaces.
We recommend the reader to consult the original publications
by the authors, such as [3, 4], for a broader view of this area of
research.

2. Electronic reconstruction at
Mott-insulator/band-insulator heterostructures

In this section, we review the theoretical work that explained
the existence of a metallic phase at the interface of two Ti-
oxide materials. At present, it is widely recognized that
interfaces between different correlated electron systems can
generate new electronic phases that are different from the bulk.
Let us discuss this rather general concept, namely electronic
reconstruction, by using a model heterostructure. Specifically,
we consider a [001]-type heterostructure in which a Mott
insulator and a band insulator with cubic perovskite structure
ABO3 are grown along the z direction. This corresponds to
the LaTiO3/SrTiO3 heterostructures reported by Ohtomo et al
[1]. We define a model heterostructure by placing +1 point
charges at some of the A sites. The charge +1 corresponds
to the charge difference between a rare-earth ion (charge +3)
and an alkaline-metal ion (charge +2). Electrons are assumed
to move between nearest-neighbor B sites involving transition
metal d-shells. They suffer an on-site Hubbard interaction
U , long-range repulsive Coulomb interactions with electrons
on different sites, and also attractive interactions with the +1
charged A ions. The total electron number is determined by
the neutrality condition; areal densities of electrons and +1-
charged A ions are equal. Thus, A+2BO3 (no electrons) is
a band insulator characterized by an empty conduction band
above the Fermi level. On the other hand, when the on-site
interaction is substantially strong, A+3BO3 (one electron per
site) becomes a Mott insulator characterized by Hubbard bands
centered at ±U/2 separated by a Mott gap.

Dealing simultaneously with strong correlations and
spatial inhomogeneity is a theoretical challenge. For this
purpose, we generalized the dynamical mean-field theory
(DMFT) [5] to a multilayer geometry [3, 6], and solved the
self-consistency equations with a Hartree approximation for
the long-range part of the Coulomb interactions. Figure 1
shows a numerical result for the spatially resolved spectral
function of electrons, for a model Mott-insulator/band-
insulator heterostructure [3]. Layers at |z| < 5 and at |z| > 5
correspond to a Mott-insulating region and band-insulating
regions, respectively, and the layer at |z| = 5 is the interface.
At layers |z| � 6, the spectral function is essentially identical
to that of a bulk band-insulator. Approaching the Mott-
insulating region by reducing z, the spectral function evolves
fairly continuously. Eventually, the conduction band turns
into a sharp quasiparticle band at the Fermi level, dominating
the spectral weight at the interface layer |z| = 5. The
existence of finite spectral weight at the Fermi level indicates
the metallic property of the heterostructure. Penetrating into
the Mott-insulating region |z| < 5, the quasiparticle bands
loses its weight exponentially. These behaviors contrast with
a simple band-bending picture for interfaces between two band
insulators with a finite band offset.

Figure 1. Spatially resolved spectral function of a model
Mott-insulator/band-insulator heterostructures [3]. Parameters are
chosen as U = 16t for the on-site Hubbard interactions (the hopping
integral is t). For the long-range Coulomb interactions, a dielectric
constant ε = 15 and a lattice constant a = 4 Å were used. The
heterostructure is defined by +1 charges placed at the A-site layers at
z = ±0.5,±1.5, . . .± 4.5 so the electronic (B) sites are located at
integer values of z. More details can be found in [3]. Reproduced
with permission from [3]. Copyright 2004, the American Physical
Society.

The metallic behavior of such Mott-insulator/band-
insulator heterostructures was actually reported experimentally
in early work by Ohtomo et al [1]. Furthermore, recent
photoemission experiments on LaTiO3/SrTiO3 superlattices
have confirmed the appearance of a quasiparticle band at the
Fermi level, in agreement with the theoretical prediction [7].

The essential physics controlling the properties described
above is the charge transfer between the two insulators. This
creates intermediate filling regions, in between the fillings
of the two insulators, which are responsible for the metallic
behavior of the heterostructure. Therefore, even if the on-site
interaction is strong enough to produce a bulk Mott insulator,
metallic behavior survives at the interface. More realistic
model calculations including orbital degeneracy and electron–
lattice couplings further predicted interesting spin and orbital
orderings that are different from bulk materials [3]. Electronic
reconstruction, which is the appearance of new electronic
phases that are different from the bulk electronic phases, at
interfaces of correlated electron systems is a quite general
phenomenon. Interesting novel electronic phases may result
at the interface of properly chosen oxides. We will discuss
such interface reconstructions in other models in the following
sections.

3. Interfaces of manganites and cuprates

The simple setup and results of the previous section show
that the transfer of charge between complex oxides should
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Figure 2. Schematic band diagrams of LCO, SCO(NCO),
Nb0.01-STO, Nb0.05-STO, YBCO, and LSMO based on diffusion
voltage measurements and photoemission spectroscopy. Tops of
valence bands (VB) and bottoms of conduction bands (CB) are
indicated by solid lines, while chemical potentials are indicated by
dashed lines. More details can be found in [4]. Reproduced with
permission from [4]. Copyright 2007, the American Physical
Society.

be a very general phenomenon. In this section, recent
theoretical efforts in this context carried out by Yunoki et al
[4] are briefly reviewed (for more details the reader should
consult the original publication). The main result of [4]
was the prediction that a transfer of charge could occur from
a manganite to the upper Hubbard band of some undoped
cuprates (high-Tc parent insulators). Since electronic doping
of some Cu oxides has led to superconductivity, potentially
the manganite-cuprate multilayers discussed in [4] could also
become superconducting.

One of the main results of [4] is the discussion of a
band alignment study of several oxides, which is illustrated
in figure 2. Using experimental information, such as the
work functions of oxides, the relative positions of the Mott
gaps and the chemical potentials were (crudely) predicted.
This plot suggests that the mixture of a manganite, such
as La1−x SrxMnO3 (LSMO), and a doped superconducting
cuprate, such as YBa2Cu3Oy (YBCO), should lead to the
transfer of charge from LSMO to YBCO. This is in agreement
with recent experimental results [8], giving confidence to
the qualitative validity of the analysis. Moreover, new
predictions can be made. For instance, mixing LaMnO3

(LMO) with Sm2CuO4 (SCO) should lead to the transfer of
charge from LMO to the upper band of SMO, and probably
to an electron-doped superconductor, as already mentioned.
While more details about this particular case can be found
in [4], here the main issue to remark is that by the procedure
outlined in this section and [4], it is possible to make
qualitative predictions for the direction of charge transfer at
interfaces. This is of fundamental importance for the guidance
of experimental efforts, since the number of combinations
of oxides is enormous and theory must predict which of
those combinations are potentially the most attractive for the
fabrication of superlattices.

The intuitive picture based on the work functions, and the
possible development of superconductivity in some cuprates
via a proximity with the manganites, was further substantiated
in [4] by actual numerical calculations. For example, figure 3

Figure 3. Transfer of charge from an A-type AF state (as in some
doped manganites [9]) to an AF insulator (such as undoped LCO,
SCO, NCO, or YBCO), inducing an electron-doped SC state at the
interface. The actual DE model parameters used here are JH = 8t ,
tz = t , WL = 14t , and nL

+ = 0.7 for the left side of the system, and
U = 4t , V = −3t , tz = 0.1t , WR = 0, and nR

+ = 1.0 for the right
side of the system. α = 1 is set for the whole system, with
L = 16 × 16 × 24 being the lattice studied. The interface is located
at iz = 12.5. The localized spins in the left side of the systems are
fixed to be in an A-type antiferromagnetic state, and the temperature
of the study was T = t/400. More details can be found in [4],
including the model Hamiltonian used. Reproduced with permission
from [4]. Copyright 2007, the American Physical Society.

illustrates the results of a simple mean-field approximation.
The upper panel shows the electronic density versus position
along the chain, for the case of an interface between an A-
type AF state (simulating an undoped manganite) and a G-
type AF state (simulating an undoped cuprate), after a Poisson
equation iterative procedure is carried out. Details can be
found in [4]. The middle panel illustrates the magnetic
properties. The spin arrangement away from the interface is
either A or G, as expected by construction. However, near
the interface on the G-AF side (which simulates the undoped
cuprate) an accumulation of electronic charge takes place
due to the different chemical potentials of the two materials.
This region is electron doped, reducing drastically the spin
G-type AF tendencies. Concomitant with this reduction
of antiferromagnetism, the lower panel shows the expected
development of superconductivity. Thus, the theoretical
calculations are in agreement with the simple picture based
on the work functions. However, note that more sophisticated
calculations, beyond the mean-field approximation, are needed
to fully confirm these tendencies.

The possibility of generating an electron-doped supercon-
ductor via charge transfer from other oxides may help in un-
veiling the true phase diagram of the high temperature super-
conductors. According to phenomenological calculations by
Alvarez et al [10], in the absence of quenched disorder (clean
limit) the phase diagram of cuprates should have either a first-
order transition separating the competing states or a region of
local coexistence of both orders (actually, stripes are a third
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Figure 4. (a) and (b) are the possible phase diagrams of the cuprates
in the clean limit [10], which may be experimentally realized at the
interfaces discussed in [4] and briefly reviewed here. No distinction
is made between hole or electron doping, x represents both. (c) is the
well-known phase diagram of chemically doped La2−x Srx CuO4

(LSCO), which can also be obtained from (a) and (b) by adding
quenched disorder. According to [10], the glassy state between
AF and SC phases is caused by quenched disorder, and it contains
superconducting and antiferromagnetic clusters.

more exotic possibility, see [10]). None corresponds to the
true (experimental) phase diagram of LSCO. The clean limit
proposed and actual experimentally observed phase diagrams
are in figure 4. The key idea of [10] was the observation that
the LSCO true phase diagram can be obtained from the clean
limit phase diagram by merely adding quenched disorder. This
opens a window in the phase diagram between the competing
phases and induces an intermediate glassy state. If this obser-
vation is correct, then quenched disorder fundamentally affects
the cuprate’s phase diagrams. Then, the possibility of doping
Cu-oxide parent insulators via charge transfer in multilayers
becomes a possible path to reveal the real clean limit phase di-
agrams of the cuprates, which at present may be much distorted
by the chemical doping procedure.

4. Superlattices of insulating materials can lead to a
metal

Besides containing a brief review of recent work on interfaces
of correlated electrons, this manuscript also includes new
results that are described in this section. The goal here is to
illustrate, with a simple example, how an array (multilayer) of
thin layers (thin meaning just a few lattice spacings in width)
can have properties drastically different from those of the bulk
constituents. In particular, the cases of the Hubbard and DE
models will be investigated. In both examples, the ‘building
blocks’, namely the isolated layers, are insulating. However,
it will be shown that the ensemble becomes metallic due to
transfer of charge.

4.1. Superlattices in the Hubbard model

In this subsection, the results for a superlattice described
by the well-known Hubbard model are presented. The
heterostructure studied here is formed by alternating layers
of two different materials, labeled A and B, which are
chosen to be insulating and chemically homogeneous. In
the simple Hubbard electronic Hamiltonian, each material can
be parametrized by selecting its electronic density, which in
the bulk locally matches the charge of the positive ions for
an homogeneous system. Let us assume that only one band
is relevant to determine the properties of the material under

study: then the system can be described by the (single-orbital)
Hubbard model defined by

Ĥ = −t
∑

〈i, j〉
c†

iσ c jσ+U
∑

i

ni↑ni↓+
∑

i

(
Vi − μ+ WA/B

)
ni ,

(1)
where c†

iσ is the creation operator for an electron with spin
projection σ = ↑,↓ at site i , t is the hopping integral between
neighboring sites, and 〈i, j〉 denotes nearest neighbors; ni =
ni↑ + ni↓ gives the number of electrons at site i , U is the
on-site Coulomb repulsion, and Vi is the electronic potential
(discussed in more detail later) that will take into account
effects related to the charge redistribution. μ is the chemical
potential, while WA and WB are site potentials. Finally, to
simplify the numerical task, without altering the qualitative
aspects of the conclusions, a one-dimensional arrangement will
be studied. The simplicity of the results described below lead
us to believe that the conclusions are valid in higher dimensions
as well.

Note that Vi has contributions coming from both the ionic
and electronic charges. While the ionic part can be easily
calculated, the dependence on the electronic densities makes
Vi a complicated operator. In the continuum limit, Vi should
be determined by the Poisson equation. Therefore, we can use
an iterative procedure to calculate the ground state properties
of the Hamiltonian (1) [11]. For a given iteration it, we assume
that we have a guess for the electronic charge distribution nit

i
that is used to calculate V it

i by solving the discretized Poisson
equation:

Vi+1 − Vi−1 − 2Vi = α
(
ni − n+

i

)
, (2)

where α = e/aε, ε is the dielectric constant, e is the charge of
the electron e, and a is the lattice constant. The right-hand-side
of the equation is a lattice discretized version of the second
derivative operator. The ground state of the Hamiltonian (1),
ψ it , is calculated via the DMRG algorithm [12] using V it

i .
The value for the next iteration is calculated as nit+1

i =∑N
j=0 β j〈ψ it− j |niψ

it− j 〉, where β j ∈ (0, 1] and
∑

j β j = 1.
The procedure is repeated until the set V it

i converges.
To calculate the ground state we typically keep 200 states

per DMRG block. We perform enough number of DMRG
sweeps between two consecutive solutions of the Poisson
equation to verify that each |ψ it 〉 is converged for the V it

i used.
In practice, typically β0 ≈ 0.9 and N ≈ 2. We have found
empirically that the iterative procedure is particularly difficult
to converge for α > 0.5, if β < 0.9.

Typical results are shown in figure 5 where the charge
density profile along the chain, parametric with the reciprocal
value of the dielectric constant α = 1/ε, is given for the case
of two insulating materials with n+

A = 1 and n+
B = 0, and

in the realistic limit where U is much larger than t (namely,
when a robust Hubbard gap develops at half-filling; U is an
atomic coupling in the range of a few eVs, while t is just
a fraction of eV). From the figure, it can be easily observed
that the long-range Coulomb interaction, considered via the
Poisson equation, alters qualitatively the charge profile from
a highly inhomogeneous insulating state for large α (with
electrons following the positive charge density of the bulk
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Figure 5. Electronic charge density 〈ni 〉 along the one-dimensional
structure shown (that simulates a multilayer), for several values of
the reciprocal of the dielectric constant α. The parameters of the
Hamiltonian (1) are U = 4t and WA = WB. The heterostructure is
formed by alternating 6-site layers with ionic backgrounds
n+

A = 1, n+
B = 0. The average electronic density is n = 0.5714. For

small enough α, the charge is fairly homogeneously distributed and
the ensemble is expected to be metallic.

materials) to a nearly homogeneous metallic state for small
α. This last observation is the main result of this section:
the fact that the multilayer system is made out of thin layers
allows the electronic charge to be redistributed all along the
heterostructure. From previous investigations of the Hubbard
model, it is known that this model with electronic density ∼0.5
is metallic. Thus, by mixing insulators, a metal emerges in the
multilayer geometry for sufficiently thin layers, a remarkable
result.

For completeness, in figure 6 we also show results for a
similar electronic charge density profile but for the case when
the ionic background charges are n+

A = 0 and n+
B = 1.

As before, the charge is effectively redistributed all along the
chain3.

4.2. Superlattices in the double-exchange model

The previous Hubbard model results could be used for
interfaces involving a Mott insulator and a band insulator.
However, if one of the building blocks is a manganite, then
the DE model should be employed. This DE model takes
into account that the electrons that form the bands close to the
Fermi level are in partially filled d-orbitals. The degeneracy of
the d-orbitals is usually removed by the crystal field created
by the underlying crystalline structure. This results in the
appearance of a gap between the different representations of
the d-orbitals in the symmetry group of the ionic lattice, for
example between the t2g and eg orbitals in the case of the
perovskite tetragonal structure. The filled sub-band can be
described by a localized spin. In the case of interest here
(LaMnO3 (LMO) and SrMnO3 (SMO)), the eg sub-band is
higher in energy than the t2g sub-band, which is filled and it is
represented by a localized 3/2-spin (usually assumed classical

3 Additional results in 1D structures can be found in [13].

Figure 6. Electronic charge density 〈ni 〉 along the multilayer
structure shown, for several values of the reciprocal of the dielectric
constant α. The values of the parameters are the same as in figure 5,
with the exception of the ionic background which were inverted and
are now n+

A = 0 and n+
B = 1. The average electronic density is

n = 0.4285.

for simplicity). Then, a manganite system can be described by
the DE Hamiltonian [9]:

Ĥ = −t
∑

〈i, j〉

∑

σ

c†
iσ c jσ +

∑

i

(
Vi − μ+ WL/R

)
ni

− JH

∑

i

∑

α,β

c†
iα (
σ)αβ ciβ · 
Si + JAF

2

∑

〈i, j〉

Si · 
Sj , (3)

where now c†
i,σ creates an eg-electron at site i with spin

projection σ = ↑,↓. For simplicity, here only one band in
the eg manifold is used, a widely used approximation. t is the
hopping integral between neighboring sites for the electrons
in this eg sub-band; JH is the Hund coupling between the
electrons in the eg sub-band; and JAF is the antiferromagnetic
exchange interaction between neighboring localized spins,
which takes into account the virtual hoppings in the t2g sub-
band. 
σ = (σx , σy, σz) are Pauli matrices, and 
Si is a classical
localized spin at site i (| 
Si | = 1) representing the t2g spins.
More details about this model and the physics of manganites in
general can be found in [9].

The considerations related to the long-range portion of the
electrostatic potential used in the previous subsection remain
valid here as well, and a similar iterative procedure is also used.
The difference is that the ground state of the Hamiltonian (3)
is solved by the numerical Monte Carlo method, instead
of the DMRG technique. The Hamiltonian is separated in
spin and electronic components. The electronic portion is
treated exactly via library subroutines. The localized spins
are treated in the classical approximation using a Monte Carlo
algorithm [9].

Regarding the distribution of electronic charge, the results
are qualitatively similar to those in the case of the Hubbard
model. A typical case is shown in figure 7 at low temperature.
Once again, as α is reduced the charge spreads, and its
value is far from the nominal 1 and 0 of the building
blocks. Clarifications are here in order: (1) the coupling
JH = 8t is realistic, as widely discussed in previous
literature [9]. In fact, JH is estimated to be a few eV’s,
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Figure 7. Electronic charge versus position along a chain of 42 sites,
using the DE model and parameters and temperature indicated.
Clearly the charge spreads as α is reduced.

while the hopping t is always just a fraction of eV. Note
that JH is a local on-site ferromagnetic interaction, and it is
not the actual parameter directly regulating the strength of
the critical temperature. The latter arises from an effective
double-exchange coupling between nearest neighbors spins.
(2) The limit JAF = 0 is chosen for simplicity. It is
already well-known [9] that at JAF = 0, and with one eg-
electron per site in the one-orbital model, the ground state
is antiferromagnetic. Then, LMO is properly described.
Regarding SMO, a better description would have needed JAF �=
0, to represent the antiferromagnetism present in the limit of
zero eg carriers. However, this approximation does not at all
affect the conclusions (see below) of our effort.

For the case of the DE model, the magnetic properties are
more interesting than for the Hubbard model. The reason is
that together with the metallicity induced by charge transfer
in a multilayer structure, the magnetic properties change from
antiferromagnetic (for the bulk components LMO and SMO) to
ferromagnetic (in the multilayer). This is illustrated in figure 8,
for α = 1. The upper panel shows the charge density, which is
not changing much in the range of temperatures investigated.
However, the lower panel, with the spin–spin correlations,
indicates clearly the development of ferromagnetism upon
cooling. The reason is simple. The electronic density is no
longer 1 or 0, as in the LMO and SMO limiting cases, but
at every site this density becomes an intermediate number
between 1 and 0. This charge doping leads to ferromagnetic
tendencies, since the well-known DE mechanism becomes
active upon doping [9]. In fact, it is known from previous
investigations that the tendencies toward ferromagnetism are
the strongest at electronic density 0.5, and they survive in a
wide range of dopings. From this perspective, the results are
easy to understand: (1) the long-range Coulomb interaction
spreads the charge, effectively doping LMO with holes and
SMO with electrons; (2) in hole or electron-doped manganite
antiferromagnets, the DE mechanism leads to ferromagnetism.
However, there is an important difference between multilayers
and bulk compounds: the chemical doping procedure usually
employed to dope oxides, for instance substituting La by Ca, is
now replaced by a mere spreading of the charge in the vicinity
of the interface. Then, the influence of quenched disorder is

Figure 8. Ferromagnetism in multilayers of antiferromagnetic
manganites. Upper panel shows the charge distribution for α = 1.0,
which only has a weak temperature dependence. The lower panel, on
the contrary, shows the clear development of ferromagnetism upon
cooling. Shown are the spin–spin correlation from the center (site 21)
to the rest of the sites, Ci = 〈 
Si · 
S21〉. All results were obtained with
the Monte Carlo technique, with the exception of T = 0 which was
found using a minimization procedure for the classical spins. The
model was the DE, with the same parameters as in figure 7.

Figure 9. Conductance corresponding to the one-dimensional
structure used in figure 8. The increase of the conductance with
reducing temperature indicates metallic behavior.

reduced by this procedure, as already discussed in the case of
superconductors in previous sections.

The ferromagnetism goes together with metallicity, as
shown in figure 9 where the conductance is given as a function
of temperature. Similarly as it occurs in bulk DE models,
the appearance of ferromagnetism also leads to a substantial
increase in the conductance. The conductance increase with
reducing temperature signals the existence of a metal in
the multilayer system that is made out of antiferromagnetic
insulators, which is a conceptually interesting result. Novel
properties arise in the multilayer structure as a whole that are
not present in the individual materials that form the multilayer.
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5. Conclusions

In this manuscript, recent investigations by the authors in
the area of interfaces of complex oxides, using modeling
techniques and numerical simulations, were briefly reviewed.
In addition, new results corresponding to multilayers
of insulating antiferromagnets (in a 1D arrangement for
simplicity) were also presented. The spreading of charge
between the two materials involved in the multilayer is
sufficiently strong to generate a metallic state, which in the case
of the manganites is ferromagnetic due to the DE effect. These
simple examples illustrate the potential of working with oxide
multilayers: they provide us with a novel procedure to tune
properties of materials by adjusting the width and the nature
of the components themselves. The number of combinations
is huge and this field of research is in its early stages.
The experimental effort clearly needs theoretical guidance to
establish which are the most interesting combinations of oxides
to investigate. This new ‘playground’ for correlated electrons
surely will provide several surprises in the near future, which
not only may influence on fundamental research in complex
oxides by generating new interfacial phases, but may also be
of potential relevance in devices in the growing field of oxide
electronics.
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